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ABSTRACT
A string graph is the intersection graph of a set of curves
in the plane. Each curve is represented by a vertex, and
an edge between two vertices means that the correspond-
ing curves intersect. We show that string graphs can be
recognized in NP. The recognition problem was not known
to be decidable until very recently, when two independent
papers established exponential upper bounds on the num-
ber of intersections needed to realize a string graph [18, 20].
These results implied that the recognition problem lies in
NEXP. In the present paper we improve this by showing
that the recognition problem for string graphs is in NP,
and therefore NP-complete, since Kratochv��l [12] showed
that the recognition problem is NP-hard. The result has
consequences for the computational complexity of problems
in graph drawing, and topological inference.

1. STRINGS, DRAWINGS, AND DIAGRAMS
A string graph is the intersection graph of a set of curves

in the plane. A (Jordan) curve, or string, is a set homeo-
morphic to [0; 1]. Given a collection of curves (Ci)i2I in the
plane, the corresponding intersection graph is (I; ffi; jg :
Ci and Cj intersectg). The size of a collection of curves is
the number of intersection points (we assume that no three
curves intersect in the same point). A graph isomorphic to
the intersection graph of a collection of curves in the plane
is called a string graph.
The string graph problem asks how string graphs can be

recognized. The problem made its �rst explicit appearance
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in a 1966 paper by Sinden on circuit layout [21], although
a similar question had been suggested earlier by Benzer on
genetic structures [1]. The string graph problem was intro-
duced to the combinatorial community by Ron Graham in
1976 [9].
From a combinatorial point of view we are interested in

cs(G), the smallest number of intersections of a set of curves
realizing a string graph. For graphs G that are not string
graphs, we let cs(G) be in�nity. With that we can de�ne
cs(n) = maxfcs(G) : G is a string graph on n verticesg. A
computable upper bound on cs(n) implies decidability of
the string graph problem. In 1991 Kratochv��l and Ma-
tou�sek [14] showed rather surprisingly, that cs(n) � 2cn

for some constant c, and conjectured that cs(n) � 2cn
k

for
some k. The papers by Pach and T�oth [18], and Schaefer
and �Stefankovi�c [20] established upper bounds of this form,
implying decidability of the string graph problem in nonde-
terministic exponential time.
The string graph problem is closely related to a graph

drawing problem, a connection we will make use of later.
Given a graph G = (V;E) and a set R �

�
E

2

�
= ffe; fg :

e; f 2 Eg on E, we call a drawing D of G in the plane a weak
realization of (G;R) if only pairs of edges which are in R are
allowed to intersect in D (they do not have to intersect,
however). In this case we call (G;R) weakly realizable. We
say that D is a realization of G if exactly the pairs of edges
in R intersect in D.1 Let us de�ne cw(G;R) as the small-
est number of intersections in a weak realization of (G;R),
cw(G) = maxfcw(G;R) : (G;R) has a weak realizationg,
and cw(m) = maxfcw(G) : G has m edgesg.
The string graph problem can be reduced in polynomial

time to the weak realizability problem [16, 12]. The reduc-
tion is as follows. Given a graph G = (V;E), let G0 =
(V [ E; ffu; eg : u 2 e 2 Eg), and R = fffu; eg; fv; fgg :
fu; vg 2 Eg. Then G is a string graph if and only if (G0; R)
is weakly realizable.
In Theorem 4.4 we show that the weak realizability prob-

lem is in NP. Because of the reduction of the string graph
problem to the weak realizability problem, and Kratochv��l's
proof of NP-hardness of the string graph problem [12] this
implies the following corollaries.

Corollary 1.1. The string graph problem is complete
for NP.

Corollary 1.2. The weak realizability problem is com-
plete for NP.

1Kratochv��l [13, 11, 12] calls (G;R) an abstract topological
graph, and uses the word feasible for weakly realizable.



The corollaries imply that the weak realizability problem
can be reduced to the string graph problem in polynomial
time. No natural polynomial time reduction witnessing this
relationship is known (although there is an NP-reduction).
The weak realizability problem is a generalization of the

concept of crossing number of a graph G, which is the small-
est number of intersections necessary to draw G in the plane.
Garey and Johnson showed that computing the crossing
number is NP-complete [7]. Many variants of this problem
have been considered in the literature, including the pair-
wise crossing number (or crossing pairs number), which is
the smallest number of pairs of edges that need to intersect
to draw G. Pach and T�oth recently showed that computing
the pairwise crossing number is NP-hard [17]. Since there is
anNP-reduction from this problem to the weak realizability
problem, we have the following corollary.

Corollary 1.3. The pairwise crossing number problem
is complete for NP.

The string graph problem is also related to Euler (or
Venn) diagrams, and through these to topological inference.
Given a speci�cation of the relationships of concepts, such
as \some A is B, some B is C, but no A is C", we can ask
whether there is a diagram illustrating the relationship of
the concepts (regions homeomorphic to the unit disk). In
this particular case Figure 1 illustrates the given situation.

A
B

C

Figure 1: Some A is B, some B is C, but no A is C.

This problem is polynomial-time equivalent to the string
graph problem. Topological inference allows a more re�ned
set of predicates to describe relationship between regions,
but even in this case a reduction to the string graph problem
can be established, giving us the following result.

Corollary 1.4. The existential theory of diagrams and
the existential fragment of topological inference are complete
for NP.

Details of this reduction (which is anNP-reduction rather
than a polynomial time one) and the de�nitions involved can
be found in the journal version of [20]. Several restricted
versions of this problem were shown to be solvable in P and
NP earlier, but the general problem was not known to be
decidable [10, 2, 22].
For the proof of our main theorem, Theorem 4.4, the same

approach as in our earlier paper [20] proves successful: we
reinterpret the problem as a problem over words. The nec-
essary background material on words and word equations is
covered in Section 2. The topological aspects of the proof
are covered in Section 3.

2. WORD EQUATIONS
Let � be an alphabet of symbols and � be an alphabet

of variables. The alphabets � and � are disjoint. A word

equation u = v is a pair of words (u; v) 2 (�[�)��(�[�)�.
The size of the equation u = v is juj+ jvj. A solution of the
word equation u = v is a morphism h : (� [ �)� ! ��

such that h(a) = a for all a 2 � and h(u) = h(v) (h being
a morphism means that h(wz) = h(w)h(z) for any w; z 2
(� [�)�). The length of the solution h is

P
x2� jh(x)j.

A word equation with speci�ed lengths is a word equation
u = v and a function f : � ! N. The solution h has to
respect the lengths, i.e. we require jh(x)j = f(x) for all
x 2 �.
Let w be a word in ��. We can write w = c1f1c2 : : : ckfk

where the ci are characters in �, and the fi are subwords
of w. More precisely, c1 = w[1] and fi is the longest pre�x
of fici+1 : : : fk which occurs in c1f1 : : : fi�1ci. The Lempel-
Ziv (LZ) encoding of w is LZ(w) = c1[a1; b1]c2 : : : ck[ak; bk]
where fi = w[ai:::bi]. The size of the encoding is jLZ(w)j =
k(log jwj + log j�j + 1). Note that some words can be com-
pressed exponentially.
Let h : (�[�)� ! �� be a solution of an equation u = v.

The LZ encoding of h is the sequence of LZ encodings of
h(x) for all x 2 �. The size of the encoding is jLZ(h)j =P

x2� jLZ(h(x))j. The usefulness of LZ encoding for word
equations is demonstrated by following two results.

Theorem 2.1 ([8]). Let u = v be a word equation. For
an LZ encoding of a morphism h we can check whether h is
a solution of the equation in time polynomial in jLZ(h)j.

Theorem 2.2 ([19]). Let u = v be a word equation
with lengths speci�ed by a function f . Assume that u = v
has a solution respecting the lengths given by f . Then there
is a solution h respecting the lengths such that jLZ(h)j is
polynomial in the size of the binary encoding of f and the
size of the equation. Moreover, the lexicographically least
such solution can be found in polynomial time.

Given an equation with speci�ed lengths there might be
solutions which can not be LZ compressed. However Theo-
rem 2.2 says that there is a solution which can be LZ com-
pressed. In particular if the equation has a unique solu-
tion then that solution can be LZ compressed. Note that
it is easy to encode several equations into one equation [15,
Proposition 12.1.8], hence Theorems 2.1 and 2.2 hold for
systems of equations as well.
We will need the following two results which easily follow

from [8].

Lemma 2.3. For an LZ-encoding LZ(w) of w we can test
whether w is a palindrome in time polynomial in jLZ(w)j.

Lemma 2.4. Given an LZ encoding LZ(w) of w and a 2
�, we can compute the number of occurrences of a in w in
time polynomial in jLZ(w)j.

3. COMPUTATIONAL TOPOLOGY
In the following let M be a compact orientable surface

with boundary. A simple arc  such that both its endpoints
(0); (1) are on the boundary @M and the internal points

(x); 0 < x < 1 are in the interior _M is called a properly em-
bedded arc. Two properly embedded arcs 1; 2 are isotopic
rel. boundary (1 � 2) if there is a continuous deformation
of 1 to 2 which does not move the endpoints. The isotopy
class of  is the set of properly embedded arcs isotopic to



. Given two properly embedded arcs 1; 2 the intersection
number of 1 and 2 is

i(1; 2) = min
ci�i

jc1 \ c2j:

We say that two properly embedded arcs 1; 2 are isotopi-
cally disjoint if i(1; 2) = 0.
Let 1; 2 be two properly embedded arcs. A bigon B

bounded by 1; 2 is a disc which has exactly two intersec-
tions (of 1 and 2) on the boundary @B.

a bigon

Figure 2: Example of a bigon.

We will need the following standard result (see e.g. [6]).

Lemma 3.1. If two properly embedded arcs 1; 2 inter-
sect more than i(1; 2) times then they bound a bigon.

Lemma 3.2. Let 1; : : : ; n be properly embedded arcs. Then
there are c1; : : : ; cn in general position such that ci � i; i 2
[n] and jci \ cj j = i(i; j); i; j 2 [n].

Proof. Let c1; : : : ; cn be in general position such thatP
jci \ cj j is minimized. If there are two properly embed-

ded arcs ci; cj which intersect more than i(i; j) times then
they bound a bigon B. Let e; f be the sides of the bigon.
W.l.o.g. assume that B is the smallest bigon w.r.t. contain-
ment. Then any properly embedded arc c which crosses e
also crosses f , otherwise B would not be smallest. However
then we can isotope (rel. boundary) the properly embed-
ded arc ci to decrease the total number of intersections, a
contradiction. See Figure 3.

Figure 3: Decreasing the number of intersections.

Let T be a triangulation of the compact surface M . Let
 be a properly embedded arc. We say that  is normal
w.r.t. T if all the intersections with T are transversal and if
 enters a triangle t 2 T via edge e then it leaves t via an
edge di�erent from e.

Lemma 3.3. Let T be triangulation of a surface M . Let
 be a properly embedded arc. Then there is c �  which is
normal w.r.t. T .

Proof. Let c �  which minimizes the number of inter-
sections with T . If c enters and leaves t 2 T through the
same edge e then the number of intersections of c with T
can be reduced, a contradiction.

Given a properly embedded arc  which is normal w.r.t. T
we can label each edge of the triangulation with the number
of intersections of  with the edge. In each triangle the labels
of its edges determine the behavior of the curve inside the
triangle up to isotopy (for this we need that  is normal
w.r.t. T and that  is not self-intersecting). Hence the
numbering on T determines the isotopy class of . The
size of the representation is the total bitlength of the labels.
Each isotopy class may have many di�erent representations.
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Figure 4: Example of a numbering.

Call a numbering ` : ET ! N of T valid if there is a
properly embedded arc  in general position w.r.t. T which
intersects each e 2 T , `(e) times.
Let ` be a valid numbering. The sum of the labels of edges

from ET \ @M is 2. For each triangle t 2 T the labels a; b; c
of edges of t satisfy a+b � c; a+c � b; b+c � a and a+b+c
is even. These conditions are necessary for validity, but not
suÆcient. Call a labeling satisfying the conditions semi-
valid. Any semi-valid labeling de�nes a properly-embedded
arc and a (possibly empty) set of closed curves.
We associate the following system of word equations with

the triangulation T . The system will emulate behavior of a
set of labeled curves on M . We assume that the curves do
not intersect. For each oriented edge (u; v) 2 T there is a
variable xu;v encoding the order in which the curves intersect
on (u; v). Let t 2 T be a triangle with vertices u; v; w. We
add six variables yt;u, yt;v, yt;w, yu;t, yv;t, yw;t. See Figure
5. For example, the variable yt;u encodes the segments of
curves between the oriented edges (w; u) and (v; u). We
have the following equations xu;v = yu;tyt;v, xv;u = yv;tyt;u,
xv;w = yv;tyt;w, xw;v = yw;tyt;v, xu;w = yu;tyy;w, xw;u =
yw;tyt;u. Note that if we know the lengths of the x variables,
then we can calculate the lengths of the other variables, for
example jyu;tj = (jxu;vj+ jxu;wj � jxv;wj)=2.

Lemma 3.4. Given a numbering ` : ET ! N we can test
whether ` is valid in polynomial time.

Proof. We �rst verify that ` is semi-valid, and reject `
if it is not.
Let � = fa; bg. Take the set of equations associated with

T over �. For each e = (u; v) 2 ET specify jxu;vj = `(e).

For each edge e = (u; v) 2 ET \ @M we specify xu;v = b`(e).
We claim that if ` is valid then the system of equations has

a unique solution. Take the properly embedded arc  which
realizes `. Number the intersections of  with T in the order
in which they occur on . Each intersection corresponds to
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Figure 5: The variables for a triangle t.

a position in some variable. By induction on the number of
intersections it follows that each position in every variable
is forced to be b.
On the other hand if ` is not valid then, because it is

semi-valid, there is a solution to the set of word equations.
However, a lexicographically smallest solution will now con-
tain as (corresponding to the closed curves, disconnected
from the endpoints b). Because of Theorem 2.2 we can com-
pute the lexicographically least solution in polynomial time,
and|using Lemma 2.4|check that it does not contain any
occurrences of a.
Thus by solving the system we can check whether ` is

valid.

Lemma 3.5. Let 1; 2 be properly embedded arcs given
by valid numberings `1; `2. If 1; 2 do not intersect then we
can verify that i(1; 2) = 0 in polynomial time.

Proof. Let � = fa; bg. Take the set of equations asso-
ciated with T over �. For each e = (u; v) 2 ET specify
jxu;vj = `1(e) + `2(e). For each edge e = (u; v) 2 ET \ @M
we specify xu;v = w where w represents the order in which
1 and 2 occur on e.
Let h be a solution of the system. Assume that the num-

ber of occurrences of a in h(xu;v) is `1(u; v) and xu;v = xRv;u
for all (u; v) 2 ET . Then 1; 2 are isotopically disjoint.
If 1; 2 are disjoint then the system has a unique solution

h. The proof is analogous to the argument in the proof of
Lemma 3.4.
Since the solution h is unique we can �nd LZ(h) in poly-

nomial time by Theorem 2.2. For each e = (u; v) 2 E we
verify that the number of occurrences of a in h(xu;v) is `1(e),
and xu;v = xRv;u using Lemma 2.3, and Lemma 2.4.

4. WEAK REALIZABILITY
We need the following bound on the number of intersec-

tions in a drawing of a weak realization with the smallest
number of intersections.

Theorem 4.1 ([20]). Let G be a graph with m edges,
R �

�
E

2

�
such that (G;R) is weakly realizable, and let D

be a weak realization of (G;R) with the minimal number of
intersections. Then for any edge e 2 G there are less than
2m intersections on the curve realizing e in D.

To apply our topological results, we will translate the
weak realizability problem into a more topological version.
Let G = (V;E) be a graph. Let M be the surface obtained
from the plane by drilling jV j holes, each hole is labeled by
a vertex of G. Let R �

�
E

2

�
. A set S of properly embedded

arcs on M is called a weak realization with holes of (G;R)
if for each e = fu; vg 2 E there is a properly embedded arc
in S connecting hole u to hole v and if (e; f) 62 R then the
properly embedded arcs e; f are isotopically disjoint.
Given a weak realization D we can drill small holes in

place of the vertices to obtain a weak realization with holes.
Given a weak realization with holes by Lemma 3.2 there is
a weak realization with holes in which for (e; f) 62 R the
properly embedded arcs e; f are disjoint. Contracting the
holes we obtain a weak realization of (G;R).

Proposition 4.2. (G;R) is weakly realizable i� there is
a weak realization with holes.

Lemma 4.3. Let G be a graph with m edges and n ver-
tices. Assume that (G;R) has a weak realization with holes.
Let M be the surface obtained form the plane by drilling jV j
holes. Let T be a minimal triangulation of M . Then there
is a weak realization with holes of (G;R) such that there are
at most 212n+m intersections on each edge of T .

Proof. We can construct a triangulation T with 3n ver-
tices, using 3 vertices for each boundary component (hole)
and no vertices in the interior of the surface. By a simple
application of Euler's formula T has 9n� 6 edges.
Consider the following weak realization problem. Graph

H has VH = VT [ VG. We have ET [EG � EH . Moreover,
there are edges connecting v 2 VG to all vertices of T which
lie on the hole labeled by v. The pairs P of edges which are
allowed to intersect are the following.

� All pairs in R are allowed to intersect.

� For every v 2 G �x an edge ev 2 T on the boundary
of the hole labeled by v. Then ev can intersect with
edges in EG going to v.

� Any edge in T which is not on the boundary @M can
intersect any edge in EG.

Clearly (G;R) is weakly realizable i� (H;P ) is weakly real-
izable.
Consider the realization of H with the smallest number

of intersections. By Theorem 4.1 there is a realization such
that on each edge there are at most 2jEH j � 212n+m inter-
sections.

Theorem 4.4. The weak realizability problem is in NP.

Proof. Let (G;R) be an instance of the weak realizabil-
ity problem. Assume that (G;R) is weakly realizable. Hence
by proposition 4.2 it has a weak realization with holes. Let
T be a minimal triangulation of the surface M . By Lemma
4.3 there is a weak realization with holes in which each edge
of T is intersected at most 212n+m times. Hence for any arc
 and any edge e 2 T the binary encoding of the number of
intersections of  with e has size polynomial in n. To ver-
ify weak realizability with holes it is therefore suÆcient to
guess, for each edge of G, a labeling of the edges of T whose



numbers are at most 212n+m. We can then use Lemma 3.5,
for any (e; f) 62 R to check in polynomial time that e; f are
isotopically disjoint for the set of labelings we guessed. This,
by Lemma 3.2, is suÆcient to guarantee the existence of a
weak realization of (G;R).

5. STRING GRAPHS ON SURFACES AND
TRACE MONOIDS

In proving Theorem 4.4 on string graphs in the plane there
was only one place were we used the fact that the surface
was a plane, namely when we applied Theorem 4.1 which
has only been shown for the plane. The rest of the proof|
Lemma 3.2 and the assumption that we can triangulate the
surface in Theorem 4.4|hold true for any compact surface.
However, we do not currently have any bounds on the num-
ber of intersections necessary to realize a string graph in
a surface other than the plane, since the methods in the
proof of Theorem 4.4 do not seem to apply to surfaces of
higher genus than the plane. We make the following con-
jecture extending the original conjecture of Kratchov��l and
Matou�sek [14].

Conjecture 5.1. A graph that has a weak realization on
a compact surface can be realized on that surface with at

most O(2n
k

) intersections for some �xed k > 0.

If the conjecture were true, then the proof of Theorem 4.4
would generalize to compact surfaces of any genus, and we
would obtain that the weak realization problem, and there-
fore the string graph problem, are in NP for arbitrary ori-
entable surfaces. Meanwhile we can only state the following
result, for which we let cSs (G) be the generalization of cs(G)
to a surface S.

Theorem 5.2. String graphs on a compact surface S can
be recognized in NTIME(log cSs (n)), where n is the number
of vertices of the string graph.

In the absence of any upper bound on cSs for any surface
other than the plane this means that we face the question
of decidability anew. This time we use a di�erent approach
already suggested by the proof of Theorem 4.1. We will
use the connection between weak realizability and equations
on words. Words over an alphabet form a monoid with
concatenation as the operation on the monoid.
Our successful use of monoids in the proof of Theorem 4.4

relied on three facts: the exponential upper bound on cw
which allowed us to guess the lengths of the variables in-
volved in the word equations; the fact that we only had
to verify arcs that do not intersect making it possible to
phrase the problem as an equation between words; and that
we could assume the solution to be unique, resolving the
question of how to deal with the operator �R.
Since we have none of these guarantees in the general case,

we need stronger results on word equations:

� we cannot make assumptions on the lengths of vari-
ables,

� arcs can intersect, that is some pairs of letters must be
allowed to commute, and

� we have to allow equations using �R.

The main problem here is the second item: allowing selected
pairs of letters to commute. Let F be the free monoid over
the alphabet �, and I be an irreexive, symmetric relation
on �. I de�nes an equivalence relation �I on F by taking
the transitive and reexive closure of �1

I which is de�ned
as u �1

I v if and only if u = xaby, and v = xbay for some
(a; b) 2 I. That is, �I identi�es words in F that can be
obtained from each other by permuting pairs of letters in I.
The monoid F= �I is called a trace monoid. Trace monoids
have been under investigation for a while, and Matiyase-
vich showed in 1996 that the solvability of equations in trace
monoids is decidable [4]. For our purpose we need a stronger
result that allows equations with the operator �R. This re-
sult was only recently obtained by Diekert and Muscholl,
building on work by Diekert, Guti�errez, and Hagenah [5, 3].

Theorem 5.3 (Diekert, Muscholl [5]). Solvability
of systems of equations in trace monoids with involution is
decidable.

Techniques from the papers by Diekert and Muscholl [5],
and Diekert, Matiyasevich, and Muscholl [4] can probably
be combined to get an EXPSPACE upper bound on the
complexity of the decision procedure.
We can apply this result to the string graph problem on an

arbitrary compact surface S. Our goal is to decide whether
(G;R) is weakly realizable in S. We add jGj holes to the
surface S, and �x a triangulation T of the resulting surface.
As we did in the proof of Lemma 3.4 we introduce a variable
xu;v for each edge (u; v) in T , and variables yt;u, yt;v, yt;w,
yu;t, yv;t, yw;t for each triangle t in T . (See Figure 5.) We
require that xu;v = yu;tyt;v, xv;u = yv;tyt;u, xv;w = yv;tyt;w,
xw;v = yw;tyt;v, and xu;w = yu;tyy;w, xw;u = yw;tyt;u. Fur-
thermore, we ask that yt;u = yRu;t for all vertices u, and
triangles t of T . We associate each vertex h of G arbitrarily
with an edge (u; v) of T on the boundary of S such that no
two vertices are associated with edges that share a vertex.
Let � = fe : e is an edge of Gg. For each vertex h of G,
let E(h) be the set of edges that contain h. For each h �x
an arbitrary permutation ph of these edges (as letters in �),
and add the equation xu;v = eh to the system, where (u; v)
is the edge associated with h. Consider the trace monoid
over � with independence relation R. We claim that the set
of equations we built has a solution in that trace monoid,
if and only if (G;R) is weakly realizable in S. This, how-
ever, is immediate, since the allowable crossings in the trace
monoid correspond to the allowed intersections in R.

Corollary 5.4. The string graph problem, and the weak
realizability problem are decidable on any compact surface.

A stronger form of the corollary would be to bound the
number of intersections needed in the size of a solution to
the trace monoid, however the bounds for that are currently
well beyond the exponential bound we conjectured earlier.
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